Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Science ; : eadd8737, 2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2259245

ABSTRACT

The geographic and evolutionary origins of the SARS-CoV-2 Omicron variant (BA.1), which was first detected mid-November 2021 in Southern Africa, remain unknown. We tested 13,097 COVID-19 patients sampled between mid-2021 to early 2022 from 22 African countries for BA.1 by real-time RT-PCR. By November-December 2021, BA.1 had replaced the Delta variant in all African sub-regions following a South-North gradient, with a peak Rt of 4.1. Polymerase chain reaction and near-full genome sequencing data revealed genetically diverse Omicron ancestors already existed across Africa by August 2021. Mutations, altering viral tropism, replication and immune escape, gradually accumulated in the spike gene. Omicron ancestors were therefore present in several African countries months before Omicron dominated transmission. These data also indicate that travel bans are ineffective in the face of undetected and widespread infection.

3.
Viruses ; 14(5)2022 05 09.
Article in English | MEDLINE | ID: covidwho-1875802

ABSTRACT

SARS-CoV-2 is constantly evolving with lineages emerging and others eclipsing. Some lineages have an important epidemiological impact and are known as variants of interest (VOIs), variants under monitoring (VUMs) or variants of concern (VOCs). Lineage A.27 was first defined as a VUM since it holds mutations of concern. Here, we report additional lineage A.27 data and sequences from five African countries and describe the molecular characteristics, and the genetic history of this lineage worldwide. Based on the new sequences investigated, the most recent ancestor (tMRCA) of lineage A.27 was estimated to be from April 2020 from Niger. It then spread to Europe and other parts of the world with a peak observed between February and April 2021. The detection rate of A.27 then decreased with only a few cases reported during summer 2021. The phylogenetic analysis revealed many sub-lineages. Among them, one was defined by the substitution Q677H in the spike (S) gene, one was defined by the substitution D358N in the nucleoprotein (N) gene and one was defined by the substitution A2143V in the ORF1b gene. This work highlights the importance of molecular characterization and the timely submission of sequences to correctly describe the circulation of particular strains in order to be proactive in monitoring the pandemic.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/virology , Coronavirus Nucleocapsid Proteins/genetics , Humans , Pandemics , Phosphoproteins/genetics , Phylogeny , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
4.
J Leukoc Biol ; 111(1): 269-281, 2022 01.
Article in English | MEDLINE | ID: covidwho-1591653

ABSTRACT

The immune system plays a crucial role in the response against severe acute respiratory syndrome coronavirus 2 with significant differences among patients. The study investigated the relationships between lymphocyte subsets, cytokines, and disease outcomes in patients with coronavirus disease 2019 (COVID-19). The measurements of peripheral blood lymphocytes subsets and cytokine levels were performed by flow cytometry for 57 COVID-19 patients. Patients were categorized into two groups according to the severity of the disease (nonsevere vs. severe). Total lymphocytes, T cells, CD4+ T cells, CD8+ T cells, B cells, and natural killer cells were decreased in COVID-19 patients and statistical differences were found among different severity of illness and survival states (P ˂ 0.01). The levels of IL-6 and IL-10 were significantly higher in severe and death groups and negatively correlated with lymphocyte subsets counts. The percentages of Th17 in the peripheral blood of patients were higher than those of healthy controls whereas the percentages of Th2 were lower. For the severe cases, the area under receiver operating characteristic (ROC) curve of IL-6 was the largest among all the immune parameters (0.964; 95% confidence interval: 0.927-1.000, P < 0.0001). In addition, the preoperative IL-6 concentration of 77.38 pg/ml was the optimal cutoff value (sensitivity: 84.6%, specificity: 100%). Using multivariate logistic regression analysis and ROC curves, IL-6 > 106.44 pg/ml and CD8+ T cell counts <150 cells/µl were found to be associated with mortality. Measuring the immune parameters and defining a risk threshold can segregate patients who develop a severe disease from those with a mild pathology. The identification of these parameters may help clinicians to predict the outcome of the patients with high risk of unfavorable progress of the disease.


Subject(s)
COVID-19/blood , COVID-19/mortality , Interleukin-6/blood , Severity of Illness Index , Africa, Northern , Aged , Biomarkers/blood , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Cytokines/metabolism , Female , Humans , Kaplan-Meier Estimate , Lymphocyte Count , Lymphocyte Subsets/immunology , Male , Middle Aged , Multivariate Analysis , Prognosis , Treatment Outcome
5.
Viruses ; 13(8)2021 08 02.
Article in English | MEDLINE | ID: covidwho-1335237

ABSTRACT

To explore the SARS-CoV-2 pandemic in Algeria, a dataset comprising ninety-five genomes originating from SARS-CoV-2 sampled from Algeria and other countries worldwide, from 24 December 2019, through 4 March 2021, was thoroughly examined. While performing a multi-component analysis regarding the Algerian outbreak, the toolkit of phylogenetic, phylogeographic, haplotype, and genomic analysis were effectively implemented. We estimated the Time to the Most Recent Common Ancestor (TMRCA) in reference to the Algerian pandemic and highlighted the multiple introductions of the disease and the missing data depicted in the transmission loop. In addition, we emphasized the significant role played by local and international travels in disease dissemination. Most importantly, we unveiled mutational patterns, the effect of unique mutations on corresponding proteins, and the relatedness regarding the Algerian sequences to other sequences worldwide. Our results revealed individual amino-acid replacements such as the deleterious replacement A23T in the orf3a gene in Algeria_EPI_ISL_418241. Additionally, a connection between Algeria_EPI_ISL_420037 and sequences originating from the USA was observed through a USA characteristic amino-acid replacement T1004I in the nsp3 gene, found in the aforementioned Algerian sequence. Similarly, successful tracing could be established, such as Algeria/G37318-8849/2020|EPI_ISL_766863, which was imported from Saudi Arabia during the pilgrimage. Lastly, we assessed the Algerian mitigation measures regarding disease containment using statistical analyses.


Subject(s)
COVID-19/virology , Evolution, Molecular , SARS-CoV-2/genetics , Algeria/epidemiology , COVID-19/epidemiology , COVID-19/transmission , Genome, Viral , Genomics , Haplotypes , Humans , Mutation , Pandemics , Phylogeny , Phylogeography , SARS-CoV-2/classification , SARS-CoV-2/isolation & purification , Saudi Arabia/epidemiology , Travel
6.
Cytokine ; 141: 155428, 2021 05.
Article in English | MEDLINE | ID: covidwho-1064991

ABSTRACT

Accumulating evidence supports that the viral-induced hyper-inflammatory immune response plays a central role in COVID-19 pathogenesis. It might be involved in the progression to acute respiratory distress syndrome (ARDS), multi-organ failure leading to death. In this study, we aimed to evaluate the prognostic value of the immune-inflammatory biomarkers in COVID-19, then determine optimal thresholds for assessing severe and fatal forms of this disease.153 patients with confirmed COVID-19 were included in this study, and classified into non-severe and severe groups. Plasmatic levels of interleukin 6 (IL6), C-reactive protein (CRP), soluble-IL2 receptor (IL2Rα), procalcitonin (PCT) and ferritin were measured using chemiluminescence assay. Complete blood count was performed by Convergys 3X® hematology analyzer. Our results demonstrated that the peripheral blood levels of IL6, PCT, CRP, ferritin, IL2Rα, white blood cell count (WBC), neutrophil count (NEU), neutrophil-to-lymphocyte ratio (NLR), derived neutrophil-to-lymphocyte ratio (d-NLR) were significantly higher in severe forms of COVID-19. The ROC curve analysis showed that IL6 was the most accurate inflammatory biomarker. The calculated cutoff of IL6 (42 pg/ml) could correctly classify > 90% of patients regarding their risk of severity (area under ROC curve (AUROC) = 0.972) and the threshold value of 83 pg/ml was highly predictive of the progression to death (AUROC = 0.94, OR = 184) after a median of 3 days. Besides, IL-6 was positively correlated with other inflammatory markers and the kinetic analysis highlighted its value for monitoring COVID-19 patients. PCT and NLR had also a high prognostic relevance to assess severe forms of COVID-19 with corresponding AUROC of 0.856, 0.831 respectively. Furthermore the cut-off values of PCT (0.16 ng/ml) and NLR (7.4) allowed to predict mortality with high accuracy (se = 96.3%, sp = 70.5%,OR = 61.2)' (se = 75%, sp = 84%, OR = 14.6).The levels of these parameters were not influenced by corticosteroid treatment, which make them potential prognostic markers when patients are already undergoing steroid therapy.


Subject(s)
COVID-19/immunology , Interleukin-6/blood , Pandemics , Procalcitonin/blood , SARS-CoV-2 , Adolescent , Adrenal Cortex Hormones/therapeutic use , Adult , Aged , Aged, 80 and over , Algeria/epidemiology , Biomarkers/blood , C-Reactive Protein/metabolism , COVID-19/epidemiology , COVID-19/mortality , Female , Ferritins/blood , Humans , Inflammation Mediators/blood , Interleukin-2 Receptor alpha Subunit/blood , Lymphocyte Count , Male , Middle Aged , Neutrophils/immunology , Predictive Value of Tests , Prognosis , Prospective Studies , Severity of Illness Index , Young Adult , COVID-19 Drug Treatment
7.
Euro Surveill ; 25(26)2020 07.
Article in English | MEDLINE | ID: covidwho-639489

ABSTRACT

Following SARS-CoV-2 emergence in China, a specific surveillance was implemented in France. Phylogenetic analysis of sequences retrieved through this surveillance suggests that detected initial introductions, involving non-clade G viruses, did not seed local transmission. Nevertheless, identification of clade G variants subsequently circulating in the country, with the earliest from a patient who neither travelled to risk areas nor had contact with travellers, suggests that SARS-CoV-2 might have been present before the first recorded local cases.


Subject(s)
Coronavirus Infections/genetics , Coronavirus/genetics , Disease Outbreaks/prevention & control , Sentinel Surveillance , Betacoronavirus , COVID-19 , Coronavirus/classification , Coronavirus/isolation & purification , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , France/epidemiology , Genome, Viral/genetics , Humans , Pandemics/prevention & control , Phylogeny , Pneumonia, Viral/diagnosis , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , RNA, Viral/genetics , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2 , Sequence Analysis , Viral Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL